Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos
نویسندگان
چکیده
The simultaneous expression of the hunchback gene in the numerous nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is regulated in living organisms. A recently developed MS2-MCP technique for imaging nascent messenger RNA in living Drosophila embryos allows us to quantify the dynamics of the developmental transcription process. The initial measurement of the morphogens by the hunchback promoter takes place during very short cell cycles, not only giving each nucleus little time for a precise readout, but also resulting in short time traces of transcription. Additionally, the relationship between the measured signal and the promoter state depends on the molecular design of the reporting probe. We develop an analysis approach based on tailor made autocorrelation functions that overcomes the short trace problems and quantifies the dynamics of transcription initiation. Based on live imaging data, we identify signatures of bursty transcription initiation from the hunchback promoter. We show that the precision of the expression of the hunchback gene to measure its position along the anterior-posterior axis is low both at the boundary and in the anterior even at cycle 13, suggesting additional post-transcriptional averaging mechanisms to provide the precision observed in fixed embryos.
منابع مشابه
Precision of readout at the hunchback gene
The simultaneous expression of the hunchback gene in the multiple nuclei of the developing fly embryo gives us a unique opportunity to study how transcription is regulated in functional organisms. A recently developed MS2-MCP technique for imaging transcription in living Drosophila embryos allows us to quantify the dynamics of the developmental transcription process. The initial measurement of ...
متن کاملGene Regulation: Boundaries within Limits
Quantitative measurements of the Hunchback transcription factor in Drosophila embryos show that its target genes can respond with a high degree of precision to the exact level of the protein, simulating a continuous, analog readout, while other target genes show a combinatorial effect, resembling a Boolean logic element.
متن کاملFunction of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae).
The Drosophila gene bicoid functions at the beginning of a gene cascade that specifies anterior structures in the embryo. Its transcripts are localized at the anterior pole of the oocyte, giving rise to a Bicoid protein gradient, which regulates the spatially restricted expression of target genes along the anterior-posterior axis of the embryo in a concentration-dependent manner. The morphogen ...
متن کاملMid-Embryo Patterning and Precision in Drosophila Segmentation: Krüppel Dual Regulation of hunchback
In early development, genes are expressed in spatial patterns which later define cellular identities and tissue locations. The mechanisms of such pattern formation have been studied extensively in early Drosophila (fruit fly) embryos. The gap gene hunchback (hb) is one of the earliest genes to be expressed in anterior-posterior (AP) body segmentation. As a transcriptional regulator for a number...
متن کاملQuantifying the Bicoid morphogen gradient in living fly embryos.
In multicellular organisms, patterns of gene expression are established in response to gradients of signaling molecules. During fly development in early Drosophila embryos, the Bicoid (Bcd) morphogen gradient is established within the first hour after fertilization. Bcd acts as a transcription factor, initiating the expression of a cascade of genes that determine the segmentation pattern of the...
متن کامل